MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2011	0606	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2011		12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA-1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme: Teache	rs' version		Syllabus	Paper
		IGCSE – October/Nove	mber 2011		0606	12
1	$\frac{1}{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}$ $= \frac{\sin\theta\cos\theta}{\sin^2\theta + \cos^2\theta}$		M1		r adding fractions in s/tan/cot correctly	a terms of
			M1	M1 for use of correct identity		
	$=\sin\theta\cos\theta$		A1 [3]	A1 for	correct solution on	ly
	$\frac{\tan\theta}{\tan^2\theta+1} \text{ or } \frac{1}{2}$	$\frac{\cot\theta}{\cot^2\theta+1}$	M1 M1 for adding fractions in te correctly		a terms of tan/cot	
	$=\frac{\tan\theta}{\sec^2\theta}$ or $\frac{d}{\cos^2\theta}$	$\frac{\cot\theta}{\sec^2\theta}$	M1	M1 for use of correct identity		tity
	$=\sin\theta\cos\theta$		A1	A1 for correct solution only		ly
2	$(2y+1)^2 + y^2$ (or $5x^2 - 2x -$		M1	 M1 for attempt to get an equation in term of one variable only DM1 for obtaining a 3 term quadratic equation DM1 for attempt to solve quadratic equation A1 for a pair of values 		quation in terms
	leading to $5y^2$	+4y-28=0	DM1			m quadratic
	(or $x^2 + \left(\frac{x-1}{2}\right)^2$	$\left(\frac{1}{2}\right)^2 = 29$)	DM1			quadratic
	$x = -\frac{23}{5}, y = -$	$-\frac{14}{5}$ and	A1			
	x = 5, y = 2		A1			
	(5, 2) spotted g	gets B1	[5]			

	Page 5	Mark Scheme: Teache		Syllabus	Paper
		IGCSE – October/Nove	mber 2011	0606	12
3	(i) $\frac{1}{\log_2 x}$ or	$\frac{\log_2 2}{\log_2 x}$	B1		
	(ii) $u^2 - 3u + 2u^2 $		M1	M1 for a correct attempt to obtain an solve a quadratic equation in terms or $\log_2 x$	
	<i>u</i> = 1, 2		A1	A1 for $u = 1, 2$	
			M1	M1 for attempt to solve an form $\log_2 x = k$ leading t	
	x = 2 and	<i>x</i> = 4	A1 [5]	A1 for both	
4	When $x = 2, y =$	= 9	B1	B1 for $y = 9$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{3}.6x.(3x)$	$(^{2}+15)^{-\frac{1}{3}}$	B1, B1	B1 for $\frac{2}{3}.6x$, B1 for $(3x^2)$	$(+15)^{-\frac{1}{3}}$
	when $x = 2$, $\frac{dy}{dx}$	$\frac{2}{2} = \frac{8}{3}$			
	∴ grad of norm normal : $y - 9 =$	2	M1 M1	M1 for use of $m_1m_2 = -1$ M1 for attempt to find equination must be using gradient of line	
	8y + 3x = 78		A1 [6]	A1 allow unsimplified	
5	(i) $y^2 = m2^x$	+ <i>c</i>	M1	M1 for use of straight line given	e equation as
	81 = 80 + c = 1	С	M1	M1 for use of (16, 81)	
	$y^2 = 5(2^x)$)+1	A1	A1 – do not allow if subse work is seen	equent incorrect
	(ii) $36 = 5(2^x)$)+1	M1	M1 substitution of $y = 6$ in equation in terms of y^2 and	
	1eading to	$7 = 2^x$	DM1	DM1 for correct solution the form $2^x = k$	of equation of
	<i>x</i> = 2.81		A1 [6]		

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0606	12

6	(i)	$243 + 405x + 270x^{2} + 90x^{3} + 15x^{4} + x^{5}$ $243 - 405x + 270x^{2} - 90x^{3} + 15x^{4} - x^{5}$ $486 + 540x^{2} + 30x^{4}$	B1 B1 B1 B1	Assuming correct terms in x B1 for 486 B1 for 540 B1 for 30 B1 for all terms correct and no extra terms
	(ii)	$30y^2 + 540y - 600 = 0$	M1 DM1	M1 for attempt to obtain a 3 term quadratic equation. DM1 for correct attempt at solution of quadratic
		<i>y</i> = 1.05	A1	A1 need both solutions
		leading to $x = \pm 1.02$	A1 [8]	A1 need both solutions
7	(i)	$16x^{-\frac{1}{2}} - 8 + x^{\frac{1}{2}}$	B1, B1, B1	B1 for each correct term
	(ii)	$y = 32x^{\frac{1}{2}} - 8x + \frac{2}{3}x^{\frac{3}{2}}(+c)$	M1 A2, 1, 0	M1 for attempt to integrate a 3 term expression -1 for each error
		When $x = 9$ and $y = 30$, $c = -12$	M1 A1 [8]	M1 for attempt to find <i>c</i> , must have attempted integration A1 for $c = -12$
8	(i)	<i>M</i> (2, 4)	B1	Allow in (ii)
		Grad $AB = \frac{-2}{6}$, \perp grad = 3	M1	M1 for attempt to find gradient of perpendicular
		CD: $y - 4 = 3(x - 2)$	DM1 A1	DM1 for straight line equation
	(ii)	<i>C</i> (-2, 2) <i>D</i> (10, -7)	B1 B1, B1	B1 for <i>y</i> coordinate of <i>A</i> B1 for each
	(iii)	Area = 37.5	M1, A1 [9]	M1 for a valid attempt at area
		Special case : (ii) allow D(-6,5) (iii) area 12.5	B1, B1 M1, A1	

Page 7	7 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2011	0606	12

9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x.4\cos 4x + \sin 4x$	M1 B1, A1	M1 for differentiation of a product B1 for $4\cos 4x$, A1 all else correct
	(ii)	$I = \left(\frac{1}{4}\right) \left[x\sin 4x - \int \sin 4x dx\right]$	DM1	DM1 for realising integration is form reverse process of (i) – do not need $\left(\frac{1}{4}\right)$ until last A1
		$= \left(\frac{1}{4}\right) \left[x\sin 4x - \left(-\frac{1}{4}\cos 4x\right)\right]$	A1, A1 B1	A1 for $x \sin 4x$, A1 for $\int \sin 4x dx$ B1 for $-\frac{1}{4}\cos 4x$
		For definite integral $\left(\frac{1}{4}\right)\left[x\sin 4x - \left(-\frac{1}{4}\cos 4x\right)\right]_{0}^{\frac{\pi}{8}}$	M1	M1 for correct application of limits
		$=\frac{\pi}{32}-\frac{1}{16}$, or 0.0357	A1 [9]	
10	(i)	$2\tan^2 x + 2 = 5\tan x + 5$	M1	M1 for use of correct identity
		$2\tan^2 x - 5\tan x - 3 = 0$	M1	M1 for solution of 3 term quadratic equation
		$\tan x = -\frac{1}{2}, \tan x = 3$	M1	M1 for attempt to solve $tanx = k$ from a 3 term quadratic equation
		$x = 153.4^{\circ}, 333.4^{\circ}$ and $71.6^{\circ}, 251.6^{\circ}$	A1, A1	A1 for any pair
	(ii)	$\sin\left(0.5y + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$	M1	M1 for dealing with $\sqrt{2}$ correctly
		$0.5y + \frac{\pi}{3} = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}$	M1 M1	M1 for correct order of operations M1 for correct order of operations and attempt to get a solution in the range
		leading to $y = \frac{5\pi}{6}, \frac{23\pi}{6}$	A1, A1 [10]	Allow decimal equivalents 2.62 and 12.0

Page 8	Page 8Mark Scheme: Teachers' versionIGCSE – October/November 2011		Syllabus	Paper		
	IGCSE – October/Nove	mber 2011		0606	12	
11 EITHER						
(i) <i>A</i> = 4		B1				
(ii) $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-x} \left(-2A\sin 2x + 2B\cos 2x \right) -$		M1 B1		differentiation of a $(-2A\sin 2x + 2B\cos 2x)$	•	
$e^{-x}(A\cos \theta)$	$s 2x + B \sin 2x$)	B1	B1 for	B1 for $-e^{-x}(A\cos 2x + B\sin 2x)$		
	0, $6 = 2B - A$, $B = 5$ ion acceptable)	M1 A1	M1 for substitution to find <i>B</i>			
(iii) when $\frac{dy}{dx}$	-= 0,	M1	M1 for	their $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$		
$e^{-x}(p\cos \theta)$	$s2x-q\sin 2x\big)=0$	M1	M1 for	attempt to simplify	/	
leading to	$\tan 2x = \frac{p}{q} \left(=\frac{6}{13}\right)$	M1	M1 for	attempt to obtain t	$\tan 2x = \frac{p}{q}$	
<i>x</i> = 0.216		M1 A1 [11]	M1 for	attempt to solve ta	an 2x = k	
		[]				
(i) $\frac{dy}{dx} = \frac{dy}{dx}$	$\frac{-1)\frac{2x}{\left(x^{2}-1\right)}-2x\ln\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{2}}$	M1 B1	M1 for B1 $\frac{1}{(x^2)}$	$\frac{1}{2} \frac{1}{x} \frac{1}$	ı quotient	
Rearrang	ing to get $k = 2$	A1 A1		all else correct rearrangement to g	et $k = 2$	
(ii) $\partial y = \frac{\mathrm{d}y}{\mathrm{d}x} P$	ρ,	M1		substitution of $x = x$ method	$=\sqrt{5}$ and	
leading to	$\partial \partial y = -0.108 p$	$\sqrt{A1}$	√A1 or	n their k		
(iii) when $\frac{dy}{dx}$	$x = 0, \ 1 - \ln(x^2 - 1) = 0$	M1	M1 for	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ and attempt	t to simplify	
$\ln(x^2-1)$) = 1	A1	A1 for	$\ln\left(x^2-1\right)=1$		
$x^2 - 1 = e$	e or 2.72	A1	A1 for	$x^2 - 1 = e \text{ or } 2.72$		
leading to	$x = \sqrt{1 + e}$	A1				
$y = \frac{1}{e}$		A1 [11]				